

Sponsored by the Department of Science & Technology and GIZ

This journal is accredited by the South African Department of Education for university subsidy purposes. It is abstracted and indexed in Environment Abstract, Index to South African Periodicals, and the Nexus Database System.

The journal has also been selected into the Science Citation Index Expanded by Thomson Reuters, and coverage begins from Volume 19 No 1.

Editor

Richard Drummond

Editorial board

Mr J A Basson Energy consultant

Profesor K F Bennett Energy Research Centre, University of Cape Town

Professor A A Eberhard

Graduate School of Business, University of Cape Town

Dr S Lennon

Managing Director (Resources & Strategy Division), Eskom

Mr P W Schaberg

Sasol Oil Research and Development

Administration and subscriptions

Ms Fazlin Harribi

Annual subscriptions 2013 (four issues)

Individuals (Africa): R160 (single copy R51)
Individuals (beyond Africa): US\$109 (single copy US\$39)
Corporate (Africa): R321 (single copy R103)
Corporate (beyond Africa): US\$218 (single copy US\$77)

Cost includes VAT and airmail postage.

Cheques should be made payable to the University of Cape Town and sent to the address given below.

Enquiries may be directed to:

The Editor, Journal of Energy in Southern Africa, Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701, South Africa

Tel: +27 (021) 650 3894 Fax: +27 (021) 650 2830

E-mail: Richard.Drummond@uct.ac.za

Website: www.erc.uct.ac.za

It is the policy of the Journal to publish papers covering the technical, economic, policy, environmental and social aspects of energy research and development carried out in, or relevant to, Southern Africa. Only previously unpublished work will be accepted; conference papers delivered but not published elsewhere are also welcomed. Short comments, not exceeding 500 words, on articles appearing in the Journal are invited. Relevant items of general interest, news, statistics, technical notes, reviews and research results will also be included, as will announcements of recent publications, reviews, conferences, seminars and meetings.

Those wishing to submit contributions should refer to the guidelines given on the inside back cover.

The Editorial Committee does not accept responsibility for viewpoints or opinions expressed here, or the correctness of facts and figures.

© Energy Research Centre ISSN 1021 447X

JOURNAL ENERGY

Volume 24 Number 2 • May 2013

CONTENTS

- 2 The Manica Charcoal Stove Project Chris Bradnum
- 16 Policy options for the sustainable development of Zambia's electricity sector

 Bernard Tembo and Bruno Merven
- 28 Reassessment of the environmental impacts of sulphur oxide emissions from power stations *Philip Lloyd*
- 37 Simulation of a syngas from a coal production plant coupled to a high temperature nuclear reactor
 - Frikkie Botha, Robert Dobson and Thomas Harms
- 46 Evaluation of the regression parameters of the Angstrom-Page model for predicting global solar radiation Solomon Agbo
- 50 Photovoltaic electricity production in a residential house on Réunion
 Milorad Bojic, Alexandre Patou Parvedy, Frédéric Miranville, Dimitri Bigot, Dragan Cvetković, Slobodan Djordjević and Danijela Nikolić
- 57 Decoupling analysis of electricity consumption from economic growth in China Ming Zhang and Wenwen Wang
- 67 Human and physical energy cycles in a subsistence village in South Africa Winnie Chikava and Harold J Annegarn

General

76 Implementing building integrated photovoltaics in the housing sector in South Africa Sosten Ziuku and Edson L Meyer

SASEC – the Southern African Solar Energy Conference Wikus van Niekerk and Alan Brent

83 Details of authors

Photovoltaic electricity production in a residential house on Réunion

Milorad Bojic

Faculty of Engineering, University of Kragujevac, Kragujevac, Republic of Serbia

Alexandre Patou Parvedy

Faculty of Engineering, University of Kragujevac, Kragujevac, Republic of Serbia

Frédéric Miranville

LPBS, Equipe Physique et ingénierie mathématique appliquée à l'énergie et l'environnement, University of Réunion Island, Réunion, Republic of France

Dimitri Bigot

LPBS, Equipe Physique et ingénierie mathématique appliquée à l'énergie et l'environnement, University of Réunion Island, Réunion, Republic of France

Dragan Cvetković

Faculty of Engineering, University of Kragujevac, Kragujevac, Republic of Serbia

Slobodan Djordjević

Faculty of Engineering, University of Kragujevac, Kragujevac, Republic of Serbia

Danijela Nikolić

Faculty of Engineering, University of Kragujevac, Kragujevac, Republic of Serbia

Abstract

In this paper, the electrical energy generation of photovoltaic (PV) arrays is discussed for three cities on the island of Réunion (the Republic of France) located in the Indian Ocean. Each PV array has a different orientation as it is placed at different parts of the roof of a residential house that supposedly is a sustainable building. The electrical energy generation is obtained by using EnergyPlus software and measured solar radiation data. The highest generation of electric energy is found for the PV array located at the north roof surface. The generation of electric energy at the east-facing PV array is larger than that at the west-facing PV array. The electrical energy generation for the city of Le Port on the coast is higher than that for the cities of Cilao, and Plaine des Cafres that are located in the mountains of Réunion.

Keywords: residential house; photovoltaic; electrical energy; EnergyPlus

1. Introduction

Globally, a requirement for sustainable buildings is driven by necessity and urgency to decrease carbon dioxide emissions, and relieve energy shortage. Accordingly, clear time targets are set worldwide for sustainable buildings. First, the Energy Performance of Buildings Directive of the European Union (EU) states that all buildings built after 31 December 2018 will have to produce their own energy onsite (Kammer, 2009). From 2020 and thereafter in the USA, all new Federal buildings that enter the planning process should be designed to achieve zeronet-energy by 2030 (White House, 2009). To progress with the development and adoption of high performance buildings in the USA, the Net Zero Energy Commercial Building Initiative aims to achieve marketable zero-net energy buildings by 2025 through public and private partnerships (Dion, 2007). Finally, the UK Government set out improvements to energy requirements in Building Regulations to include that all new homes have to be 'zero carbon' by 2016 (UK Green Building Council, 2008). An answer to all these targets is a

sustainable building that heavily relies on use of PV arrays for energy generation.

As the most important devices as such, a building would have PV arrays placed on building roofs. It is important to investigate different issues around PV arrays such as their potential assessment, roof heat transfer, roof orientation, life cycle analyses, and case study applications. There has been an extensive worldwide research that covers the topics of the roof integrated PV (RIPV) application. In this direction, the current RIPV applications are reviewed by several authors such as Pagliaro et al. (2010), Parida et al. (2011), and Mekhilef et al. (2011). Pagliaro et al. discuss merging the RIPV with the construction industry. Parida et al. review across used solar photovoltaic technologies in RIPV. Mekhilef et al. discuss solar energy use in industries. These reviews show that currently there are several issues of interest for RIPV systems such as potential assessment, roof heat transfer, roof orientation, application, and life cycle analyses.

Regarding potential assessment, Jo and Otanicar (2011) do the mesoscale assessment of building integrated roof solar energy systems by using a hierarchical methodology. Bergamasco and Asinari (2011) base the assessment of the photovoltaic solar energy potential on the available roof surface area by using scalable methodology. Regarding roof heat transfer. Dominguez et al. (2011) investigate the effects of solar photovoltaic panels on roof heat transfer. Chen et al. (2010) investigate thermal performance of a PV system thermally coupled with a ventilated concrete slab in a low energy solar house. Regarding the orientation of the PV array and a roof surface, it is recognized that the choice of PV array orientation is fundamental to its efficient operation.

In his theoretical study, Chang (2009) analyses the generation of electric energy from a fixed and single-axis tracking PV array at different orientations in Taiwan. The study considers the extra-terrestrial radiation and the global radiation that are predicted by an empirical model and the measured radiation. Armstrong and Hurley (2010) propose a method for selecting the optimum orientation of the solar array in an overcast climate. In addition, the investigations are shown on the optimum orientation for different load profiles. Kacira et al. (2004) used a mathematical model to determine optimum orientation of a PV array installed in Turkey. Regarding the life cycle analysis for RIPV. Frankl et al, (1998) do a simplified life-cycle analysis of PV systems in buildings where he focused on the present situation and future trends. Kato et al. (1998) report the energy pay-back time and life-cycle CO₂ emissions of a residential PV power system with a silicon PV module. Lu and Yang (2010) perform an environmental payback time analysis of a roofmounted building-integrated photovoltaic (BIPV)

system in Hong Kong.

Regarding BIPV applications, Cheng et al. (2005) presents an empirical approach to BIPV evaluation of solar irradiation for building applications. Benemann et al. (2001) report about several large scale projects on using building-integrated PV modules. Meyer (2010) gives electrical performance results of an energy efficient building with an integrated photovoltaic system in Southern Africa. However, this literature review shows that more research attention should be devoted towards the determination of the amount of electrical energy generated by differently oriented PV arrays at their location (thus orientation) in different climates (in near tropical conditions) with measured data for solar radiation, and for different types of houses, taking into account the different social situations of their users.

This paper shows and discusses the effects of different location of PV arrays on the roof and amount of generated electrical energy. The investigated locations of PV arrays are established when they are placed on different parts of a roof of a residential house at Réunion Island in the Republic of France, in the Indian Ocean at the latitude of 21 south. These parts of the roof face different directions: east, west, north, south, and zenith. In addition, the PV array groups are studied that cover several differently oriented roof surfaces. The research was performed for solar radiation data measured at different locations at Réunion Island. The investigated locations are the cities of Le Port, Plaine des Cafre, and Cilaos. For this research, software EnergyPlus is used that gives the amounts of specific electrical energy generated during different months, and during the entire year.

2. Mathematical model

To establish the mathematical model for electrical energy generation, first, the investigated house is described, second, its PV system is described, third, the used mathematical model is given, fourth, the climate is discussed, and finally, the use of EnergyPlus modelling software with obtained outputs is discussed.

2.1 Investigated house

In this research, the electrical energy production of the residential house is investigated. The house, shown in Figure 1, is traditionally shaped. It is 81 $\rm m^2$. Its roof consists of five surfaces (where PV arrays may be placed): one horizontal of 25 $\rm m^2$ and 4 inclined surfaces. Each of the inclined surfaces has an area of 17.5m 2 , and a slope of 37^0 toward the horizon. These inclined roof surfaces would either face north, south, east or west.

2.2 The PV system

The PV system is installed in the house. The inves-

tigated PV system is shown in Figure 2. The PV arrays are located at the house roof and are connected to the grid and the house. The PV system consists of a PV array, an inverter, a kWh meter for the generated electrical energy, and a kWh-meter for the consumed electrical energy. The PV array produces the DC electricity that is sent to the inverter where it becomes AC electricity. This AC electricity is either spent at the house or is exported to the electricity grid. At each moment, different amounts of electrical energy are produced by the PV array and consumed by the residence or by the electricity grid network. The goal of this investigation is to analyse electrical energy output of the PV array. The system would run during the entire year. The operation of the PV array is simulated by using EnergyPlus.

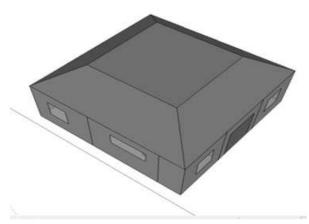


Figure 1: The investigated house

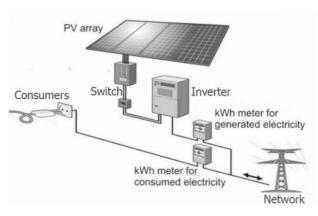


Figure 2: The PV system under investigation (the PV array is located at the house roof)

2.3 Investigated PV arrays

Five PV arrays are investigated with different sizes and orientations (locations). The first is located in the 17.5m^2 area of the 37^{o} -inclined roof facing north, the second is on the 17.5m^2 area of the 37^{o} -inclined roof facing east, the third is on the 17.5m^2 area of the 37^{o} -inclined roof facing roof south, the fourth is on the 17.5m^2 area of the 37^{o} -inclined roof facing west, and the fifth is on the 25m^2 area of the

horizontal roof. It is assumed that the PV arrays have an efficiency of 12%, and operate at the maximum power. The inverter is selected with maximum efficiency. That may not be a case when the PV system operates under the real conditions.

The power of electrical energy production is assumed constant over the time step. The PV modules are assumed to always run when $G_T > 0.3W$. If this is not the case, then the PV modules produce no power. Thermal effects of the PV arrays on temperature distribution inside the house are not reported.

2.4 The climate

Réunion Island is situated at the latitude of 21° south, and the longitude of 55° east. The climate is humid tropical. There are two seasons. A season from May to October is mainly cool and dry with the trade winds. A season from November to April is mainly hot and wet with light winds. The direct solar radiation and diffuse solar radiation are taken from meteorological files, with data measured for the three towns at Réunion Island (Cilaos, Plaine des Cafres, and Le Port). They differ in altitude. The average altitude of Le Port is 1m, Cilaos 1201m, and Plaine des Cafres 1700m.

For different months, mean values of solar radiation energy, dry bulb temperature, and wind speed for Le Port, Réunion Island, are shown in Figure A1.

2.5 Simulations

The output of EnergyPlus are amounts of electrical energy generated during each time step i (15 min duration) by the PV array (EPV,i) during the entire year. By adding them, we determine the monthly amounts of specific electrical energy produced by the PV array [EPV,M,j /(365Fk) where j=1,2,...,12] and the yearly amount of electrical energy produced by PV array [EPV/(365Fk)]. Here, k designates the PV array entity for which these variables are calculated.

3. Results and discussion

For the city of Le Port, the specific electrical energy generated during different months and during the entire year is calculated and reported for different PV array groups at the roof of the investigated house. The research is performed for the three cities

3.1 Monthly generation of electrical energy in Le Port

3.1.1 PV arrays at single roof parts

Electrical energy generated during different months in Le Port is shown in Figure 3. The electrical energy is generated by PV arrays located at different parts of the roof of the house. The PV arrays are put at five parts of the roof: east, west, north, south and horizontal. During almost the entire year, the high-

est amount of electrical energy is generated by the PV array placed at the horizontal roof except for the months of May, June, and July (winter months). During winter, the highest amount of electrical energy is generated by the PV array located at the north roof. For the month of July, the electrical energy generation is higher for the array at the north roof than that for the PV array at the horizontal roof for about 55%. The electrical energy generation for the PV array at the east roof is higher than that at the west roof during the entire year. The highest difference of up to 30% is in June, while this difference during months of August to November is insignificant. The electrical energy generation is the lowest for the array at the south roof from February to October.

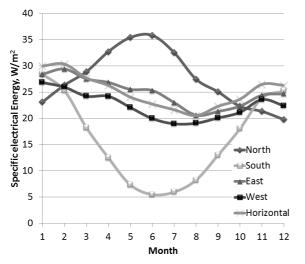


Figure 3: Electrical energy generation during different months for the building in the city of Le Port. The electrical energy is given for different roof surfaces

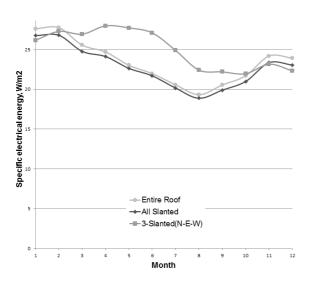


Figure 4: Specific generated electrical energy during different months for the building in the city of Le Port. The electrical energy is generated by different PV array groups

3.1.2 PV arrays at non-single roof parts

The specific electrical energy generated by several PV array groups during different months is given in Figure 4. Each investigated PV array group is located at the roof for the building in the city of Le Port. These groups consist of PV arrays covering several roof parts directed in different directions. The investigated groups are that covering the entire roof (all slanted parts and horizontal part), all slanted roof parts, and the 3 slanted roof parts (east, north, and west). During winter, the specific generated electrical energy is the highest for the PV array group covering the 3-slanted part roof. This value is around 25% higher than that for the other investigated PV array groups. During summer, the specific generated electrical energy is almost the same for the all PV array groups.

3.2 Comparison of monthly generation of electrical energy for different cities

The specific generated electrical energy during each month and year are compared for three Réunion cities: Le Port, Cilaos, and Plaine des Cafres.

The monthly amounts of electrical energy generated by the PV arrays that cover the entire roof of the investigated building are shown in Figure 5 for different cities. The figure shows that during summer, the specific generated electrical energy would be around 26% larger in Le Port than that in other cities. During winter, the specific generated electrical energy would be around 15% larger in Plane des Cafres than that in other cities. During the entire year, the specific generated electrical energy would be the lowest in Cilaos as it is surrounded with high mountains.

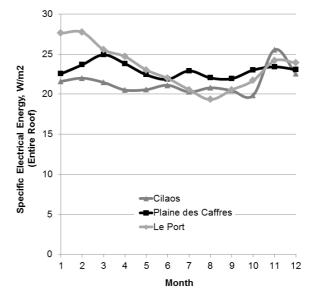


Figure 5: Specific generated electrical energy during different months for the building in the cities of Le Port, Plaine des Cafres, and Le Port

3.3 Comparison of yearly generation of electrical energy for different cities in Réunion

The annual amounts of specific electrical energy generated by the investigated building are shown in Figure 6. The PV arrays cover the east, west, north, south and horizontal surfaces of the roof. The highest amount of specific electrical energy is generated by the PV array covering the horizontal roof. The amount of the generated electrical energy is 32% larger at the PV array covering the horizontal roof than that covering the north roof, and up to 150% larger than that covering the south roof. For each city, the amount of the electrical energy generated by the PV array covering the east roof is larger up to 15% than that covering the west roof. The lowest amount of electrical energy is generated by the PV array on the south roof. The amount of the generated electrical energy is larger for the building in the city of Le Port than that in the city of Plaine des Cafres (insignificantly), and Cilaos (up to 10%) because Le Port resides north to Plaine des Cafres, and Cilaos. The electrical energy generation in Plaine des Cafres is higher than that in Cilaos as Plaine des Cafres lies at the plane and Cilaos in the valley surrounded by high mountains.

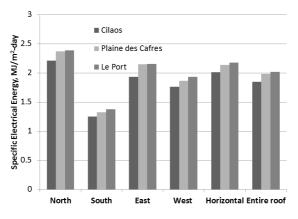


Figure 6: Annual electrical energy generation for the residential building in cities of Le Port, Cilaos, and Plaine des Cafres

4. Conclusion

In this paper, the investigation of electrical energy generation by PV arrays placed on the roof of a residential house is reported. The house is located at Réunion Island in the Republic of France, on the approximate latitude of -21° South. The PV arrays would cover five roof parts. These covered roof parts may be directed toward east, west, north, south and zenith. The research was performed for the measured data on direct and diffuse solar radiation by using software EnergyPlus. The software gives the amounts of electrical energy generated during different months, and during the entire year.

The specific electrical energy generated during different months is reported for the city of Le Port.

During summer, the highest amount of the specific electrical energy is obtained by the PV array covering the horizontal part of the roof. During the entire year, the specific electrical energy generated by the PV array covering the east roof is higher than that of the PV array covering the west roof. The lowest specific electrical energy is obtained by the PV arrays covering the south roof.

The specific electrical energy generated by several PV array groups during different months is also reported for the city of Le Port. During winter, the specific electrical energy is the highest for the PV array group covering the 3-slanted roof parts. During summer, the specific generated electrical energy is almost the same for the all PV array groups.

The specific electrical energy generated during the year by different PV arrays is moreover reported for the city of Le Port. The largest specific electrical energy is obtained by the PV arrays covering the north-facing roof part, and the smallest specific electrical energy is obtained by the PV arrays covering the entire roof.

For comparison, the monthly amounts of specific electrical energy generated by the PV arrays that cover the entire roof are reported for different cities. During summer, the specific electrical energy would be larger in Le Port than that in other cities. During winter, the specific electrical energy would be larger in Plane des Cafres than that in other cities.

For further comparison, the annual specific electrical energy generated by PV arrays in different cities is separately shown. The yearly specific electrical energy is higher in the city of Le Port than that for Plaine des Cafre and Claos.

Acknowledgement

This paper is a result of two activities: (1) a visiting professorship of Prof. Milorad Bojić to the University of Réunion Island, Réunion, Republic of France; and (2) project TR33015. The first activity is financed by the University of Réunion Island, Republic of France, and the second activity by the Ministry of Education, Science and Technological Development of Republic of Serbia. We would like to thank these institutions for their financial support during these investigations.

References

Armstrong S., & Hurley W.G. (2010). A new methodology to optimise solar energy extraction under cloudy conditions. *Renewable Energy*, Volume 35, 2010, Pages 780–787.

Benemann, J., Chehab, O., & Schaar-gabriel, E. (2001). Building-integrated PV modules. *Solar Energy Materials*, 67, 345-354.

Bergamasco, L., & Asinari, P. (2011). Scalable methodology for the photovoltaic solar energy potential

- assessment based on available roof surface area: Application to Piedmont Region (Italy). *Solar Energy*, *85*(5), 1041-1055.
- Chang T.P. (2009). Output energy of a photovoltaic module mounted on a single-axis tracking system. Applied Energy, Volume 86, 2009, Pages 2071–2078.
- Chen, Y., Athienitis, A.K., & Galal, K. (2010). Modelling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept. Solar Energy, 84(11), 1892-1907
- Cheng, C., Chan, C., & Chen, C. (2005). Empirical approach to BIPV evaluation of solar irradiation for building applications. *Renewable Energy*, 30(7), 1055-1074.
- Dion J., (2007). Building Technologies Program, Energy Efficiency and Renewable Energy. US Department of Energy, October 2007, retrieved 14. Jan. 2010.
- Dominguez, A., Kleissl, J., & Luvall, J. C. (2011). Effects of solar photovoltaic panels on roof heat transfer. *Solar Energy*, 85(9), 2244-2255.
- Frankl, P., Masini, a, Gamberale, M., & Toccaceli, D. (1998). Simplified life-cycle analysis of PV systems in buildings: present situation and future trends. *Progress in Photovoltaics: Research and Applications*, 6(2), 137-146.
- Jo, J. H., & Otanicar, T. P. (2011). A hierarchical methodology for the mesoscale assessment of building integrated roof solar energy systems. *Renewable Energy*, 36(11), 2992-3000.
- Kacira M., Simsek M., Babur Y., and Demirkol S., (2004). Determining optimum tilt angles and orientations of photovoltaic arrays in Sanliurfa, Turkey. *Renewable Energy*, Volume 29, 2004, Pages 1265–1275.
- Kammer J., (2009). All new buildings to be zero energy from 2019, Press Service Directorate for the Media, European Parliament, 2009.
- Kato, K., Murata, A., & Sakuta, K. (1998). Energy pay back time and life cycle CO2 emission of residential PV power system with silicon PV module. Progress in Photovoltaics: Research and Applications, 6(2), 105-115.
- Lawrence Berkeley National Laboratory (2001).

 EnergyPlus Engineering Document: The Reference to EnergyPlus Calculations. Lawrence Berkeley National Laboratory, 2001, retrieved 14. Jan. 2010.
- LPBS Laboratory of Physics of Buildings and Systems (2010). Réunion University, Weather online, Files of weather types for the island of Réunion, http://lpbs.univ-Réunion.fr/grandsprojets/meteo/telecharg.php, retrieved 14. Jan. 2010.
- Lu, L., & Yang, H. X. (2010). Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong. Applied Energy, 87(12), 3625-3631.
- Mekhilef, S., Saidur, R., & Safari, a. (2011). A review on solar energy use in industries. *Renewable and Sustainable Energy Reviews*, 15(4), 1777-1790.
- Meyer, E. L. (2010). Electrical performance results of an energy efficient building with an integrated photo-

- voltaic system. Journal of Energy in Southern Africa, 21(3).
- Pagliaro, M., Ciriminna, R., & Palmisano, G. (2010). BIPV: merging the photovoltaic with the construction industry. Progress in Photovoltaics: Research and Applications, 18(1), 61-72.
- Parida, B., Iniyan, S., & Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 15(3), 1625-1636.
- UK Green Building Council (2008). Zero Carbon Task Group Report, WWF-UK. UK Green Building Council, 2008, retrieved 14. Jan. 2010.

Appendix

A1 Mathematical model

A mathematical model of the PV array is used as proposed by Lawrence Berkeley National Laboratory (2001). The PV array electrical power is described by the following equation:

$$P = A_{surf} f_{activ} G_T \eta_{cell} \eta_{invert}$$
 (1)

Here, P is the usable electrical power [W] produced by the PV array, A_{surf} is the net area of the array [m²], f_{activ} is the fraction of area with active solar cells [-], $\eta_{\textit{cell}}$ is the PV array efficiency [-], $\eta_{\textit{invert}}$ is DC to AC conversion efficiency of the inverter [-], and G_T is the total solar incident radiation on PV array [W/m²]. It is assumed that the PV array has a efficiency of 12%. On the right hand side of this equation, only G_T is calculated by EnergyPlus and the rest are user inputs. For solar radiation, the full geometric model is used, including sky models, shading, and reflections, to determine the incident solar radiation. The model simulates the operation of the PV system under real conditions. To determine the temperature of the PV module, the 'Decoupled' method was used. The model of the PV module is developed under the assumption that it operates at its maximum power. That may not be the case when the PV system operates under the real conditions. The inverter is selected with maximum efficiency.

A2 The model in EnergyPlus Environment

This model represents the simplest model for predicting PV energy production in an EnergyPlus environment. It is given in the Generator:PV:Simple object. The power of electrical energy production is assumed constant over the time step. The PV modules are assumed to always run when $G_T>0.3W$. If this is not the case, then the PV modules produce no power. In EnergyPlus, the PV modules are managed by an electric load centre. The load centre is a "load" with respect to generating equipment but is a "supply centre" for the rest of the house and the outside network. In addition, the PV modules need to be connected to ElectricLoadCentre:Distribution objects of EnergyPlus with a DC buss type.

Thermal effects of the PV arrays on temperature distribution inside the house are not reported.

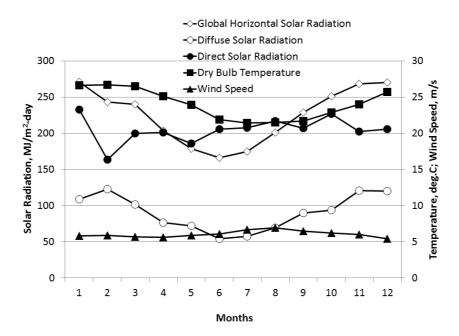


Figure A1: Mean values of solar radiation energy, dry bulb temperature, and wind speed for Le Port for different months
(LPBS, 2010)

Received 11 September 2011; revised 30 April 2013

SASEC – the Southern African Solar Energy Conference

Wikus van Niekerk

Centre for Renewable and Sustainable Energy Studies, Stellenbosch University – Chair of SASEC 2012

Alan Brent

Centre for Renewable and Sustainable Energy Studies, Stellenbosch University – Organising and Technical Review Committees of SASEC 2012

The Department of Science and Technology (DST), through the National Research Foundation (NRF), has tasked the Centre for Renewable and Sustainable Energy Studies (CRSES), Stellenbosch University, to build human resource capacity; deepen and discover knowledge; and stimulate innovation and enterprise in the field of renewable and sustainable energy. To this end, and through the academic network of CRSES, the need was identified to establish a dedicated bi-annual conference that focuses on solar energy research and development in the region. CRSES then hosted the first Southern African Solar Energy Conference (SASEC), which was held from the 21st to the 23rd of May 2012 at the Protea Hotel in Technopark outside Stellenbosch. SASEC focuses on both Solar Thermal Energy and Solar Photovoltaic technology systems and applications. SASEC 2012 provided the opportunity for researchers, engineers, technologists, enterprises, and individuals to share and discuss research and development outputs in the field over the five-year period leading to the Conference.

Over fifty papers were reviewed and accepted for presentation at SASEC 2012. The Conference drew one hundred and thirty-four delegates from nine countries. The Premier of the Western Cape Province, Ms Helen Zille, opened the Conference and the programme made provision for a combined plenary session in the morning splitting into parallel sessions in the afternoon, one focussing on solar thermal and the other on photovoltaic systems. There were two keynote speakers: Dr Christoph Richter, the Executive Secretary of SolarPACES and Project Manager of Solar Research at the Plataforma Solar de Almeria in Spain for the Institute of Solar Research of the DLR (the German Aerospace Centre); and Prof Jürgen Werner, the Director of the Institute for Photovoltaics at Stuttgart University in Germany.

After SASEC 2012, the accepted papers were further scrutinised and rated – low, medium, high – in terms of: the original reviewers' scores of the

papers for the conference proceedings; whether the papers are strongly research-based; whether the papers are understandable to a broader audience; and whether the papers speak to the wider Southern African region. The Technical Review Committee also attempted to strike a balance between solar thermal energy and solar photovoltaic technology systems, and between papers being more technical or policy/planning oriented. The outcome of the overall rating process is the six papers published in the February 2013 edition of the Journal of Energy in Southern Africa that include:

- A concentrating solar power value proposition for South Africa.
- Efficiency and costs of different concentrating solar power plant configurations for sites in Gauteng and the Northern Cape, South Africa.
- Potential and future of concentrating solar power in Namibia.
- Evaluation of feed-in tariff-schemes in African Countries.
- Optical design of low concentrator photovoltaic modules.
- Thermal modelling of low concentrator photovoltaic systems.

The Chair and the Technical Review Committee of SASEC 2012 believe these papers, as well as the other papers in the conference proceedings, make valuable contributions to develop the solar energy sector in Southern Africa; thereby contributing to further economic development in the region.

The Centre for Energy Research (CER) at Nelson Mandela Metropolitan University, Port Elizabeth, will host the second SASEC, which is scheduled for the end of January 2014 in Port Elizabeth. Further information can be obtained from the Chair of SASEC 2014, Prof. Ernest van Duk.

Contact: Prof. Ernest van Dyk.

Chair - SASEC 2014

E-mail: Ernest.vanDyk@nmmu.ac.za

Website: www.sasec.org.za

Details of authors

Solomon N Agbo B Sc (Physics) M Sc

(Physics) PhD (Sust. Eng)
Research Fellow and Head of unit:
Photovoltaics/Energy Materials, National Centre
for Energy Research and Development, University
of Nigeria, Nsukka. Nigeria
Tel: +234 70349 79506
E-mail: slmnagbo@vahoo.com

Solomon Agbo holds bachelors and masters degrees in physics. He has a PhD in renewable/sustainable energy from the Delft University of Technology, Netherlands.

He has published in many reputable journals and has made presentations at numerous international conferences and workshops. Currently he is appointed as a postdoc researcher at the New Technology Research Centre, University of West Bohemia, Plzen, to work on the European Union sponsored EXLIZ project on the development of novel materials for photovoltaic applications.

Harold J Annegarn B Sc B Sc Hons PhD

(Witwatersrand)

Professor: Department of Geography and Environmental Management and Energy Studies,

University of Johannesburg

Director: Sustainable energy Technology and

Research (SeTAR) Centre

P O Box 524, Auckland Park 2006, Johannesburg

Tel +27 11 559 3927 Fax +27 11 559 2430 Cell +27 (0) 83 628 4210 E-mail: hannegarn@gmail.com

Prof. Harold Annegarn occupies a Research Chair in the Department of Geography, Environmental Management and Energy Studies at the University of Johannesburg. He specializes in atmospheric science, air quality, and renewable and basic energy. He is the Director of the Sustainable energy Technology and Research (SeTAR) Centre, specializing in the design and testing of domestic combustion stoves and basic energy for the lower socioeconomic strata.

Dimitri Bigot PhD (Eng Man)

Piment Laboratory, University of La Réunion 117 Rue du Général Ailleret, 97430, Le Tampon, La Réunion

Tel: + (0) 262 57 92 45 Mob: + (0) 692 60 00 72 Fax: + (0) 262 57 95 40

E-mail: dimitri.bigot@univ-reunion.fr

Dimitri Bigot is an engineer with a master's degree and a PhD in building physics. He focused his works on thermal study of complex walls, particularly on the study of PV walls like PV systems integrated in the roof of buildings. He currently extends his research to PV/T systems integrated in buildings. He is a member of PIMENT laboratory at the University of La Réunion and a reviewer of the Energy and Buildings journal.

Milorad L J Bojic Dipl Eng (Mech) M Sc

(Fluid Mech) Dr Sci (Eng Sci)

Professor: Thermodynamics, Heating, Air condi-

tioning, Solar Energy

Coordinator: Centre for Heating, Air conditioning, and Solar energy

ana Solar energy

Project Director: Investigations and development of Net-Zero Energy Buildings, Faculty of Engineering of Kragujevac University, Sestre Janjic 6, 34000

Kragujevac, Serbia Tel: +381 64 844 9694 Fax: +381 34 330 196 E-mail: bojic@kg.ac.rs

Milorad Bojic is a mechanical engineer with a master's degree in fluid mechanics and a PhD in engineering sciences. He was a visiting professor at Nagoya University, Japan and Hong Kong Polytechnic University. He is on editorial boards of two Elsevier journals: Energy International and Renewable energy.

Currently he leads research within the Net Zero Energy Buildings in the Faculty of Engineering Sciences that aims to incorporate sustainable development concepts into net-zero energy buildings design. To this end, he is appointed as a visiting professor at Reunion Island University in France.

Frikkie Botha

Department of Mechanical and Mechatronic Engineering, University of Stellenbosch

Tel: +27 82 4990258

Cell: fbotha@vodamail.co.za

Frikkie Botha holds a degree in chemical engineering, as well as an honours degree in control engi-

neering from the University of Pretoria. He joined Sasol Synfuels in 2000 as a process engineer in training, but moved to the Sasol Technology Research & Development group a year later as process engineer. In this capacity, he was involved in pilot plant support, as well as in process modelling. In 2004 to 2005, he was part of a project team at Thermtron Scientific in Pretoria that completed the basic and detail engineering of the successfully commissioned nuclear fuel plant for the PBMR project. He returned to Sasol Synfuels in 2006 as senior process engineer at the gasification and raw gas cooling plants, where he was involved in production support and process improvement projects. He has a passion for process technology development in the field of energy efficiency optimisation and therefore pursued postgraduate studies in 2010. He is currently in the last stage of his M.Sc. Mechanical Engineering project at the University Stellenbosch and aims to graduate in December 2012.

Chris Bradnum B Tech: Industrial Design, M Tech: Industrial Design (cum laude) Senior Lecturer and HoD: Industrial Design, Department of Industrial Design, Faculty of Art, Design and Architecture, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg, 2028, South Africa

Tel: +27 11 559 1387 Fax: +27 11 559 1610 E-mail: cbradnum@uj.ac.za

Chris Bradnum has an M Tech (cum laude) in Industrial Design from the University of Johannesburg. He has over 20 years professional industrial design experience and has spent the past 16 years in academia, currently holding a senior lecturer and head of department post. His areas of research interest include design for development, energy and sustainable development and user centred design approaches. Chris furthermore runs his own industrial design consultancy. Projects he has been involved in include work for the Department of Home Affairs, medical equipment design, sports equipment design and kitchen products.

Winnie Chikava B Tech (Nature

Conservation) M Sc (Env Man) Junior Air Quality Specialist: Digby Wells

outilot Air Quality opecialist. Digby wells

Environmental

Fern Isle Section 10, 359 Pretoria Ave, Randburg

2125, South Africa Tel: +27 11 789 9495 Fax: +27 11 789 9498

E-mail: wchikava@gmail.com

Winnie Chikava holds a B Tech (Nature Conservation) from the National University of Science and Technology, Bulawayo, Zimbabwe, and an MSc (Environmental Management) from the University of Johannesburg (2012). She worked as

a specialist reporter writer and client liaison officer with SGS Environmental and is currently employed at Digby Wells Environmental consultancy in the field of air quality.

Dragan Z Cvetkovic

PhD student: Faculty of Engineering Science at University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia

Tel: +381 64 124 62 33

E-mail: dragan_cw8202@yahoo.com

Dragan Cvetkovic is a graduated mechanical engineer in heat engineering and environmental protection. Currently, he is PhD student in the field of heat engineering and energy management. He works on the research project titled 'Research and development of Serbian homes zero net-energy consumption' financed by the Ministry of Science of Serbia.

Slobodan B Djordjevic

PhD student: Faculty of Engineering at University of Kraquievac

Manager of Electro energetic sector: Energy Plant Energetika DOO, 34000 Kragujevac, Trg topolivaca 4. Serbia

Tel: +381 34 301 911 Fax: +381 34 335 044

E-mail: sdjordjevic@energetikakg.com

Slobodan Djordjevic is a graduate electrical engineer, and a PhD student in Faculty of Engineering at Kragujevac, University of Kragujevac.

Robert Dobson

Senior Lecturer, Department of Mechanical and Mechatronic Engineering, University of Stellenbosch

E-mail: rtd@sun.ac.za

Robert Dobson received his degree in Mechanical Engineering in 1969 and his postgraduate degree in Nuclear Engineering in 1970. He then registered as a Professional Engineer in 1973. He worked at the then Atomic Energy Board until 1980 and gained experience in the design, manufacture and testing of reactor components and systems.

He then joined Kwikot Ltd and gained experience in the design, manufacture and marketing of electric and solar water heaters and heat pumps. From 1985 and 1987, he was Engineering Services Manager at Kentron Pty Ltd a missile systems manufacturing company. Since 1988, he has been a Lecturer at the University of Stellenbosch. He now gives undergraduate courses in Food Engineering and Heat Transfer. He also gives postgraduate and specialist courses in Two-phase Flow and Heat Transfer, and Nuclear Reactor Safety-System Engineering. His research interests are in heat transfer, heat to power conversion using closed and closed-loop single and two-phase natural circulation thermosyphon-type heat pipes and thermal

management and control using heat pipes and other two-phase flow and heat transfer devices. Over the past 12 years, he has published 34 peer reviewed papers, presented 43 papers at international conferences, supervised 21 thesis projects and is at present supervising and co-supervising 23 Masters and PhD thesis projects.

Thomas Harms B Sc M Sc PhD -(Mech.Eng.)

Department of Mechanical and Mechatronic Engineering, University of Stellenbosch

Tel: 021 808 4376 Fax 021 808 4958 E-mail tmh@sun.ac.za

Thomas Harms is a Professor and Head of the Thermo-Fluid Division of the Department of Mechanical and Megatronic Engineering at the University of Stellenbosch. He typically teaches subjects in heat transfer and fluid mechanics and his main research interest is computational fluid dynamics, as relevant to conventional and renewable energy systems.

Philip Lloyd

Energy Institute, Cape Peninsula University of Technology

 $\hbox{$E$-mails: plloyd@mweb.co.za and}$

lloyd@cput.ac.za

Philip Lloyd was educated at UCT (Chemical Engineering) and MIT (Nuclear Physics). After a spell with the Atomic Energy Board, he worked for the Chamber of Mines Research Organisation, becoming Director: Metallurgy. When that ended, he became part of the international construction industry, and oversaw a number of major projects in South Africa, Australia, Russia and Europe.

For his third career, he returned to academic life, first in chemical engineering at Wits, then as a Research Fellow at UCT's Energy Research Centre, and, since 2009, at the Energy Institute, Cape Peninsula University of Technology.

When not researching, he is an active consultant, and has appeared as an expert witness before the International Court of Arbitration. He has won several awards, including the gold medal of the SA Institution of Mining and Metallurgy, the 2010 Award of the SA National Energy Association, the 2012 Conrad Gerber Award as African Intellectual of the Year, and was nominated as part of the IPCC team when the IPCC shared the Nobel Peace Prize in 2007. He has over 200 publications.

Bruno Merven BSc (Eng) MSc (Elec Eng)

MSc (FinMaths)

Senior Researcher: Energy Research Centre,

University of Cape Town Consultant: IRENA Tel: +27 21 650 5787

Email: brunomerven@gmail.com

Bruno has been working in the field of energy systems modelling and planning since 2005. He has worked and has been involved in the development of several energy systems models of South Africa, Southern Africa, West Africa, South-East Europe, and in the Middle East, on various modelling platforms. He also lectures on the Energy Systems Analysis Course at the Energy Research Centre, and has been involved in several capacity building projects across Southern and Western Africa for the IAEA and IRENA.

Frederic Miranville, PhD (Building Physics) Research Group leader: Building Physics Physics and Mathematical Engineering Laboratory for Energy and Environment, University of Réunion, 15 avenue Rene Cassin, 97715, Saint-Denis MESSAG CEDEX 9

Tel: + 262 692 294 487 Fax: + 262 692 938 709

E-mail: frederic.miranville@univ-reunion.fr

Frederic Miranville is a Professor in Building Physics at the University of Réunion, and obtained a PhD in complex wall including reflective insulation in 2002. He is the leader of a research group in Building Physics, part of the Physics and Mathematical Engineering Laboratory for Energy and Environment (EA 4518). He developed a building simulation code, with special interest about complex walls, including active and passive issues. He's also contributed to an experimental platform dedicated to building physics, located in field environment in the south of Réunion Island, and is probably unique in the French overseas departments.

He is the author of multiple publications and has collaborations in France and in other countries (Serbia, United States, Australia, Portugal, and Madagascar).

Currently he is Vice-President of the University of Réunion, in charge of external relations and employability of students.

Danijela Nikolic

PhD student: Faculty of Engineering at University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia

Tel: +381 69 844 96 31

E-mail: danijelan@kg.ac.rs

Danijela Nikolic is a graduated mechanical engineer in process engineering. Currently, she is PhD student in the field of heat engineering and energy management. She works on the research project titled 'Research and development of Serbian homes zero net-energy consumption' financed by the Ministry of Education, Science, and technological Development of Serbia.

Alexandre Patou-Parvedy *M Sc* (Building and systems physics)

PhD student: Faculty of Engineering at University of Kragujevac, Sestre Janjic 6, 3400 Kragujevac Serbia

Tel: + 381 34 335 990 Fax: +381 34 333 192

E-mail: parvedyalexandre@gmail.com

Alexandre Patou-Parvedy has a master's degree in building and systems physics with the option of inner environment in buildings. Currently, he is PhD student in the field of heat engineering, energy management, and solar energy. He is working on the research project titled' 'Research and development of zero net-energy consumption buildings'.

Bernard Tembo B Eng (Mech Eng) M Sc Eng

(Sustainable Energy Eng)
PhD Graduate Researcher
University College London (UCL), Energy Institute
and Institute of Sustainable Resource, 14 Upper
Wolburn Place,
WC1H ONN, London

Tel: +44 (0) 203 108 5938 E-mail: ben2great@yahoo.co.uk

Bernard Tembo is a Mechanical Engineer with a masters' degree in Sustainable Energy Engineering from University of Cape Town. He is currently reading for his PhD at University College London, focusing on energy efficiency in Africa's copper mines. He is also a Research Assistant within the Energy Institute UCL focusing on Africa's energy systems.

Wenwen Wang PhD (Applied Mathematics)

Fellow, School of Science, China University of Mining and Technology, Xuzhou, 221116, PR China

Tel: +86 1525 0946721 E-mail: wendlut@163.com

Wenwen Wang holds a Doctorate in Applied Mathematics from the Dalian University of Technology. His research interests include energy modelling, rural energy consumption, and energy-related CO2 emissions.

Ming Zhang PhD (Energy and Environment

Engineering)

Associate Professor, School of Management, China University of Mining and Technology, Xuzhou, 221116. PR China

Tel: +86 1526 2028260

E-mail: zhangmingdlut@163.com

Ming Zhang holds a Doctor of Energy and Environment Engineering from the Dalian University of Technology. His research interests include energy economics and policy, energy efficiency, rural energy consumption, and energy-related CO2 emissions.